3D Printing Of Geometric Shapes

From Processing Code to Model Slicing and 3D Printing Considerations

Ryan Kurtz - 11/15/2021 RKurtz@Amherst.edu

Preparing Processing For 3D Object Exporting

- 1. **Install** the OBJExport library
 - a. In Processing go to Sketch -> Import Library -> Add library -> Search for "OBJExport" -> Install
- 2. Import the OBJExport library into your code
 - a. In Processing go to Sketch -> Import Library (select OBJExport) This puts the line "import nervoussystem.obj into the top of the code.
 - Before any draw commands add the the command beginrecord("nervoussystem.obj.OBJExport", "filename.obj");
 - c. After all draw commands add the command "endRecord();"
- 3. **Save** your Code then **run** the code with the beginRecord() and EndRecord() commands in the proper place.
- 4. You now have an .obj file of your 3D object!
- 5. **Send** this .obj file to <u>rkurtz@amherst.edu</u> with your full name and choice of material color (Blue/Green/Clear/Red)

.OBJ Files and converting them to .GCODE

- 1. .obj files must be converted to the .gcode file format to be 3D printed
 - a. .obj files contain data about 3D objects including 3D coordinates, texture maps, polygonal face data and other details.
 - b. .gcode is a file that details a tool path and other parameters pertinent to 3D printing, CNC machining and other additive/subtractive manufacturing technologies.
- 2. Processing a .obj file (or any other 3D model file) into a .gcode is done through a "Slicer" program.

Slicing Considerations

- 1. Many slicing programs available
 - a. Slic3r -> PrusaSlicer
 - b. Cura (Ultimaker)
 - c. IdeaMaker (Raise3D)
 - d. Simplify3D

2. Primary FDM (Fused Deposition Modeling) printing setting to consider

Extrusion Temperature	PLA: 190-220	Retraction	Variable
Bed Temperature	PLA: 0-60	Platform Additions	None/ Skirt/ Brim/ Raft
Layer Height	0.2mm	Supports	Off/On -> Density (%)
Printing Speed	~60mm/sec	Cooling	0% -> 100%
Infill	0%-100% (15%)	Shell Thickness	1 - 3 paths

3D Printing Technologies on Campus

Creality Ender 3 Pro (FDM)

- 220x220x250mm build volume
- Flexible magnetic bed
- Nozzle temperature up to 240°C
- Bed temperature up to 110°C
- 0.1-0.3mm layer height

Raise3D E2 (FDM)

- 220x220x250mm build volume
- Flexible magnetic bed
- Nozzle temperature up to 240°C
- Bed temperature up to 110°C
- 0.1-0.3mm layer height
- Independant Dual Extrusion
- Remote operation via cloud platform

Elegoo Saturn (SLS)

- 192x120x200mm build volume
- UV curing at 405nm in ~3sec
- 0.05-0.1mm layer

The Project in a nutshell...

- 24 Cubes 12 clear translucent, 4 blue translucent, 4 red translucent, 4 green translucent
- 12 student designed geometries
- 1 Name cube with all participants names embedded
- LED lighting for pizzaz

Questions or thoughts about the project? Questions on 3D printing in general? Future project ideas?